$$
\text { LECTURE NO } 5
$$

- Conversion of a point into various coordinate systems

NUM ERICALS

Given point $P(-2,6,3)$ and vector $\left.A=y a_{s}+(x+2)\right)_{y}$, express P and A in cylindicical and spherial coodinates, Evaluate A a P in the Cartesian, cylindicica, and sphericial systems.

At point P : $x=-2, y=6, z=3$. Hence,

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}}=\sqrt{4+36}=6.32 \\
& \phi=\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{6}{-2}=108.43^{\circ} \\
& z=3 \\
& r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{4+36+9}=7 \\
& \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}=\tan ^{-1} \frac{\sqrt{40}}{3}=64.62^{\circ}
\end{aligned}
$$

Thus,

$$
P(-2,6,3)=P\left(6.32,108.43^{\circ}, 3\right)=P\left(7,64.62^{\circ}, 108.43^{\circ}\right)
$$

For vector $\mathbf{A}, A_{x}=y, A_{y}=x+z, A_{z}=0$. Hence, in the cylindrical system

$$
\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{rrr}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
y \\
x+z \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
& A_{\rho}=y \cos \phi+(x+z) \sin \phi \\
& A_{\phi}=-y \sin \phi+(x+z) \cos \phi \\
& A_{z}=0
\end{aligned}
$$

But $x=\rho \cos \phi, y=\rho \sin \phi$, and substituting these yields

$$
\begin{aligned}
\mathbf{A}=\left(A_{\rho}, A_{\phi}, A_{z}\right)= & {[\rho \cos \phi \sin \phi+(\rho \cos \phi+z) \sin \phi] \mathbf{a}_{\rho} } \\
& +\left[-\rho \sin ^{2} \phi+(\rho \cos \phi+z) \cos \phi\right] \mathbf{a}_{\phi}
\end{aligned}
$$

At P

$$
\rho=\sqrt{40}, \quad \tan \phi=\frac{6}{-2}
$$

Hence,

$$
\begin{aligned}
\cos \phi= & \frac{-2}{\sqrt{40}}, \quad \sin \phi=\frac{6}{\sqrt{40}} \\
\mathbf{A}= & {\left[\sqrt{40} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{\rho} } \\
& +\left[-\sqrt{40} \cdot \frac{36}{40}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{-2}{\sqrt{40}}\right] \mathbf{a}_{\phi} \\
= & \frac{-6}{\sqrt{40}} \mathbf{a}_{\rho}-\frac{38}{\sqrt{40}} \mathbf{a}_{\phi}=-0.9487 \mathbf{a}_{\rho}-6.008 \mathbf{a}_{\phi}
\end{aligned}
$$

Similarly, in the spherical system

$$
\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{c}
y \\
x+z \\
0
\end{array}\right]
$$

But $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, and $z=r \cos \theta$. Substituting these yields

$$
\begin{aligned}
\mathbf{A}= & \left(A_{r}, A_{\theta}, A_{\phi}\right) \\
= & r\left[\sin ^{2} \theta \cos \phi \sin \phi+(\sin \theta \cos \phi+\cos \theta) \sin \theta \sin \phi\right] \mathbf{a}_{r} \\
& +r[\sin \theta \cos \theta \sin \phi \cos \phi+(\sin \theta \cos \phi+\cos \theta) \cos \theta \sin \phi] \mathbf{a}_{\theta} \\
& +r\left[-\sin \theta \sin ^{2} \phi+(\sin \theta \cos \phi+\cos \theta) \cos \phi\right] \mathbf{a}_{\phi}
\end{aligned}
$$

At P

$$
r=7, \quad \tan \phi=\frac{6}{-2}, \quad \tan \theta=\frac{\sqrt{40}}{3}
$$

Hence,

$$
\begin{aligned}
\cos \phi= & \frac{-2}{\sqrt{40}}, \quad \sin \phi=\frac{6}{\sqrt{40}}, \quad \cos \theta=\frac{3}{7}, \quad \sin \theta=\frac{\sqrt{40}}{7} \\
\mathbf{A}= & 7 \cdot\left[\frac{40}{49} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{\sqrt{40}}{7} \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{r} \\
& +7 \cdot\left[\frac{\sqrt{40}}{7} \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}} \cdot \frac{-2}{\sqrt{40}}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{\theta} \\
& +7 \cdot\left[\frac{-\sqrt{40}}{7} \cdot \frac{36}{40}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{-2}{\sqrt{40}}\right] \mathbf{a}_{\phi} \\
= & \frac{-6}{7} \mathbf{a}_{r}-\frac{18}{7 \sqrt{40}} \mathbf{a}_{\theta}-\frac{38}{\sqrt{40}} \mathbf{a}_{\phi} \\
= & -0.8571 \mathbf{a}_{r}-0.4066 \mathbf{a}_{\theta}-6.008 \mathbf{a}_{\phi}
\end{aligned}
$$

